
CHAPTER 8

Dealing with uncertainty in ancestral
sequence reconstruction: sampling
from the posterior distribution

David D. Pollock and Belinda S.W. Chang

8.1 Introduction

Whereas the evolution of morphology, particu-

larly bone morphology, can be studied by dig-

ging up fossilized remains, DNA and proteins

unfortunately do not survive the ravages of time

as well. Nevertheless, the evolution of ancient

protein function can be studied by inferring

ancestral sequences using phylogenetic tech-

niques (Fitch, 1971; Yang et al., 1995; Koshi and

Goldstein, 1996) and applying gene-synthesis

methods to resurrect them and assay their func-

tion in vitro (Geman and Geman, 1984; Malcolm

et al., 1990; Jermann et al., 1995; Krawczak et al.,

1996; Ivics et al., 1997; Messier and Stewart, 1997;

Benner et al., 2000; Benner, 2002; Chang et al.,

2002a, 2002b; Zhang and Rosenberg, 2002;

Gaucher et al., 2003a, 2003b; Thornton et al., 2003;

Thornton, 2004). The power of this approach lies

in the opportunity to directly test hypotheses

concerning the evolution of ancestral protein

structure and function. Molecular evolution is a

field dominated by inferences about the past

based primarily on examination of present-day

protein function, making this hypothesis-testing

ability particularly important. Since an experi-

mentally recreated ancestral sequence is inferred

rather than observed, however, the question

remains as to whether the functional features of

the reconstructed protein are a true approxima-

tion of the functional features of the ancestral

protein. A thorough statistical assessment and

justification of the method used is therefore crit-

ical to success.

Parsimony methods have been used for ances-

tral reconstruction due to their ease of imple-

mentation; however, certain limitations such as the

lack of an explicit model of evolution, and bias

towards more frequent amino acids (or nucleo-

tides, in the case of DNA or codon reconstructions;

Collins et al., 1994; Zhang and Nei, 1997; Eyre-

Walker, 1998; Sanderson et al., 2000; Krishnan et al.,

2004), have rendered the use of model-based

maximum likelihood in an empirical Bayesian

approach more prevalent (Chang et al., 2002a,

2002b; Gaucher et al., 2003b; Thornton et al., 2003;

Thornton, 2004). More recently, full Bayesian

methods have also been implemented (Huelsen-

beck et al., 2003; Ronquist and Huelsenbeck, 2003;

see also Chapter 16 in this volume).

Depending on the levels of sequence divergence

at which ancestral nodes are being reconstructed,

there can be substantial variation at certain

amino acid sites in the ancestral sequences inferred

under different models of evolution. This issue

of model variability in reconstructed ancestral

sequences has been addressed experimentally

using a variety of methods. These methods have

ranged from using site-directed mutagenesis

techniques to generate variants at sites differing

among maximum-likelihood results from different

models (Chang et al., 2002a), to the incorporation

of degenerate oligonucleotides into the synthesis

of the most likely ancestral gene, allowing

for random sampling of sites that vary under dif-

ferent models (Ugalde et al., 2004). At the

levels of divergence investigated thus far, these
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experiments have not demonstrated significant

functional differences among reconstructed ances-

tral protein variants. However, this issue of model

variability in experimental recreation of ancestral

proteins is distinct from the uncertainty that can

arise under a single model of evolution, which is

the main concern of this chapter. Model variability,

and how best to address it experimentally, is the

subject of Chapter 15 in this volume, and will not

be discussed at length here.

Due to the constraints imposed by the effort and

resources required to reconstruct ancestral pro-

teins in the laboratory, most studies of ancestral

protein function have by necessity tended to focus

on a single optimal ancestral sequence. This is

either the most parsimonious ancestor for the

maximum-parsimony approaches or the most

probable ancestor (MPA) for the Bayesian and

empirical Bayesian approaches (Krishnan et al.,

2004). If time has permitted, variants based on that

initial sequence have also been synthesized. This

was assumed to make sense, given the high costs

of synthesizing and expressing proteins in vitro,

but the potential pitfalls of focusing on the MPA

were not thoroughly considered. Unfortunately,

just as with maximum-parsimony reconstructions,

optimality-based MPAs can be biased toward

more frequent amino acid states, even when the

model is correct (Krishnan et al., 2004). This bias in

amino acid frequencies may in turn lead to

biases in the inferred function of the recon-

structed ancestors (Krishnan et al., 2004; Williams

et al., 2006).

The goal of ancestral inference, of course, is to

have as accurate a picture of ancestral function as

possible, so it is worthwhile to try to understand

the nature and cause of the sequence and func-

tional bias, and how to overcome this bias.

The principle source of bias in the MPA and

maximum-parsimony reconstructions is (as their

names imply) the choice of a ‘‘best’’ reconstruction

for every site in the protein. Although this sounds

intuitively preferable, the result of repeatedly

making the optimal or best choice at every site is

that you will preferentially choose amino acids

that are more frequent at every site. If these

more frequent amino acids are preferentially

associated with some aspect of function, such as

thermodynamic stability, then the cumulative

effect will be an error in reconstruction of that

aspect of function. Although an optimist might

prefer to assume that such association is rare, in

nearly-neutral population genetics models and in

thermodynamic-based population genetics simu-

lations, slightly deleterious variants tend to be

incorporated into substitutions less often than the

more fit alternatives. Simulations show that this

can lead to reconstructed ancestors that are more

stable than the true ancestral sequences (Williams

et al., 2006).

It is important to note that the bias toward more

frequent amino acids in ancestral reconstruction is

due to the choice of the most probable amino acid

residue at each site, from the posterior probability

distribution of all amino acids at that site. To our

knowledge, it has not yet been shown that there

are important differences in ancestral reconstruc-

tion depending on the whether the posterior

sampling comes from a full Bayesian analysis

of topology and other parameters, or from an

empirical Bayesian analysis that produces a mar-

ginal posterior distribution of amino acid fre-

quencies at each node and site. In this paper, we

will refer to the bias in ancestral reconstruction as

optimization bias, regardless of the method of

generating the posterior distribution.

In considering how ancestral amino acid fre-

quency optimization biases might lead to ancestral

functional biases, it might be assumed that biases

are only a problem if the frequency of a particular

amino acid residue is biased across the entire

protein under consideration. This is not the case,

however, since the bias arises according to the

frequency of the particular amino acid residues at

each site. Thus, if slightly deleterious variants are

the less frequent variant at every site, it does not

matter which residue is slightly deleterious, and it

does not matter if these slightly deleterious resi-

dues are consistently one or a few particular amino

acids, or not.

8.2 A case study

Consider the case of the ancestral archosaur visual

pigment, rhodopsin (Chang et al., 2002a). This

protein was chosen for ancestral reconstruction
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analysis partly because there is very little diver-

gence (no more than 16%) among all vertebrates,

and indeed the posterior probability for the most

likely amino acid reconstructions at almost all sites

is in the range of 0.9–1.0 (see Figure 2 from Chang

et al., 2002a), with only six sites having values

of less than 0.9. However, in total there are, on

average, nearly three (2.44) sites that would have

been sampled differently if sampled from the

posterior (or marginal posterior) rather than

choosing the MPA at each site (on average, two of

these differently sampled sites would have come

from the six sites with the least likely maxima). In

a random sample of 10 sequences from the pos-

terior, the MPA sequence was never sampled, and

the sequences sampled differed from the MPA

sequence by up to five sites (Figure 8.1a).

We can also consider whether the amino acid

frequencies are different in the most likely ancestor

than in the extant vertebrates, but this turns out to

be somewhat difficult to answer with any cer-

tainty. The average amino acid frequencies are

different between the sites that are conserved

among all vertebrates and those that are variable

(Figure 8.2a), particularly for the amino acids alan-

ine, cysteine, glycine, isoleucine, proline, arginine,

serine, valine, and tyrosine. The rare variants

(those observed only once) also have a notably

different profile: for the amino acids noted above,

the rare variants match the conserved frequencies

for alanine, glycine, proline, and tyrosine, match

the variable frequencies for isoleucine and argin-

ine, and are uniquely different for cysteine, serine,

and valine. Furthermore, they are notably different

from both conserved and variable site averages for

aspartic acid, histidine, methionine, and serine, for

which the frequencies are greater, and glutamic

acid, lysine, leucine, and valine, for which the

frequencies are less.

Using the marginal posterior probabilities cal-

culated in PAML (from the analysis in Chang et al.

2002; see also Chapter 15 in this volume), it can

be seen that there are also frequency differences

between the sites that are certain (posterior

probability, 1.0) and uncertain at the archosaur

ancestral node (Figure 8.2b). These are moderate

for cysteine, phenylalanine, histidine, isoleucine,

lysine, and tryptophan, but quite large for

glutamic acid, glycine, proline, valine, and tyro-

sine. In contrast, the frequencies of amino acids in

(a)

37  54  107  112 137 173 189 213 308
 F   I   A   I   V   V   V   T   V
 F   V   A   I   V   V   V   T   V
 F   I   A   I   V   V   I   A   M
 Y   I   A   I   V   V   V   T   V
 Y   V   I   I   V   V   V   A   V
 F   I   I   I   I   V   V   T   V
 Y   I   A   V   V   V   I   T   V
 Y   V   I   I   V   V   I   T   V
 F   I   A   I   V   I   I   T   V
 F   V   I   I   V   V   I   A   V

(b)

AEFLLLIIPYVATYIKAVGEIFIVVLQTEAQMSVKT
GEFLLLVIAYVATYIWVVGEIFIVVLPTEAHFSVKT
AEFLLLIIPYVATSIWAVGEICIVILQADAQFSMKT
AEYLLFIIPYVATYIWVVGEIFIVVLPTEAQFSVKT
AEYVLLVIPYMITYIWVVGEIFIVVLPAEAQFCVKT
AEFLLLIIPYVITYIWVIGEIFIVVLPTEAQFSVKM
AEYLLLILPYVATYVWVVGEIFIVIRPTERQFSVKT
ADYLMLVIPYVIIYPWVVTNIFAVILPTEAQFSVKT
AEFLLLIIPLVATYIWVVGELFIIILPTEAQFSVST
AEFLLLVIPYVIAYIWVVGEIFIVILPAEAQFSVKT

Figure 8.1 Amino acid variation among 10 sampled ancestors. In (a)

the sequences are random samples from the posterior distribution under

the general time-reversible (GTR) model. Only the sites that were variable

among the sampled sequences are shown, and residues that differed from

the MPA sequence are highlighted. The MPA sequence was never

sampled; three sequences differed from the MPA at one site, four

sequences differed at two sites, two differed at three sites, and one

sequence differed from the MPA sequence at five sites. The alignment

number of each variable site is shown above the site column. In (b) a

sampling of rare variants (residues observed only once at a site) is added

to each random sequence. The rare variant is highlighted in dark gray,

and these new sequences differ from the MPA sequence by three (two

sequences), four (two sequences), five (three sequences), seven (two

sequences), or 10 (one sequence) sites. The number of rare variants per

sequence was determined by random sampling from a Poisson distribution

with a mean of 3.43 (see legend for Figure 8.3). Each rare variant was

chosen randomly from among the 103 residues observed only once at a

site. For aesthetic reasons, we did not display the rare variant sites

selected, but in order these are 32, 33, 40, 49, 50, 63, 71, 74, 81, 108,

111, 112, 126, 130, 150, 154, 159, 162, 194, 196, 235, 237, 273, 281,

311, 232, 319, and 349. Note that, as expected, we have occasionally

sampled the same rare variant (130, 196), different rare variants at the

same site (108), or rare variants at sites that were already sampled

differently based on the posterior (112).
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the most likely archosaur reconstruction at vari-

able sites are often midway between the certain

and uncertain frequencies, but there are a number

of notable exceptions, including alanine, histidine,

and arginine.

The question of the effect of rare variants on

ancestral reconstruction is a thorny one, mostly

because it is difficult to assess their prevalence in

ancestral sequences with any degree of accuracy

(precisely because of their rarity). Models deter-

mined by averaging over many sites will tend to

obscure variants that are rare at some sites

but not at others, while the best conceivable

site-specific models will not accurately assess the

true frequencies of rare variants because there

are not enough data at an individual site.

Nevertheless, we wanted to provide an example

to illustrate the possibility for rare variants to be

under-sampled in this data-set, regardless of

which amino acid is the rare variant. With over

100 variants observed only once at a site, it is

reasonable to wonder whether a substantial

number of low-frequency or rare amino acid

variants are missing from the reconstructed

ancestor. If such variants tend to affect function,

then their absence could bias results.
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Figure 8.2 Amino acid frequencies for extant and

ancestral sequences. Frequencies in extant organisms

were divided into those sites that were variable or

conserved among all sequences from extant organisms

(a), and were also divided into those sites that were

certain (posterior probability¼ 1.0) or uncertain

(posterior probability <1.0) in the archosaur ancestor

under the general time-reversible (GTR) model (b).

Amino acid frequencies in the rare variants (those

residues observed only once in the extant sequences

at a site) and in the MPA sequence are also compared

in a and b, respectively. For the uncertain sites, the

frequencies are calculated based on the extant

sequences, not the posterior probability at that site.

ML, maximum likelihood.
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If the number of times that a variant is observed

among all vertebrates is used to estimate its

expected frequency, then rare variants clearly

tend to be under-represented in the reconstructed

ancestor. The distribution of variant counts on a

logarithmic scale (Figure 8.3a) is somewhat U-

shaped, meaning that at many sites it is common

to have a single dominant variant and one or more

rare variants. A rough estimate of the expected

number of times that a variant should be sampled

in the ancestor can be calculated by weighting the

variant count by the number of times each variant

is observed in the vertebrates. We did this by first

counting over all L sites the number of times,

Nx, that any residue is observed x times at

each site; that is, Nx ¼
PL

i

Ci
x, where Ci

x is the count

of variants observed x times at site i. Assuming

that there is no bias in ancestral reconstruction, the

expected representation of these variants in the

maximum-likelihood ancestor is just the frequency

of each variant count among all sequences in the

alignment, Ex ¼ xNx=S, where S is the number of

sequences (in this case, 30).

For example, there were 103 rare variants

that were observed only once in the 30 extant

vertebrates sampled, and we expect that on aver-

age 1� 103/30¼ 3.43 of these should have been

sampled in the maximum-likelihood archosaur

ancestor (whereas in practice, no rare variants

were sampled in the maximum-likelihood ances-

tor). When expectations are compared with the

number of times that variants were sampled in the
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Figure 8.3 Distribution of variant counts among

extant rhodopsins and predicted under-sampling of rare

variants in the ancestral archosaur. The distribution of

variant count observations in the extant archosaurs was

assessed (a) and used to determine whether variants of

a specific count were under- or over-represented in the

MPA archosaur compared to expectation (b). The

observed versus expected points for variants observed

five or fewer times are shown as gray circles, and the

points for variants observed between six and 11 times

are shown as white circles. Cumulatively, variants at

frequencies of 11 or fewer are observed almost 20 times

less than expected. ML, maximum likelihood.
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maximum-likelihood reconstruction at variable

sites, it can be seen that most of the variants that

were under-sampled relative to expectation were

observed 11 or fewer times in the vertebrate

sequences sampled (19.7 variants). An even greater

proportion of under-sampling was found among

those variants observed five or fewer times (13.5

variants; Figure 8.3b).

These estimates seem high, and this may be due

partly to our use of a rough non-phylogenetic

estimator of variant frequencies. The under-

estimate of rare variants at a particular node will of

course depend upon the phylogenetic structure

around that node, the frequencies of rare variants

at each site in the alignment, and the rates of

substitution to and from those rare variants at each

site. Nevertheless, the estimate serves as an illus-

tration of the potential for a substantial number of

rare variants to be omitted from the MPA.

Whereas it is true that the degree that rare variants

are absent will depend somewhat on the phylo-

genetic position of a node, and the assumption that

site-specific frequencies are well estimated by this

(or any other method) is almost certainly wrong,

it is also true that less-frequent variants will be

systematically missing from MPA or maximum-

parsimony reconstructions, regardless of phyloge-

netic position.

We took the frequency of rare variants observed

only once (3.44) as a much more conservative

estimate of the possible number of missing rare

variants, and added a sample of those rare variants

to the 10 previously sampled sequences from the

posterior (Figure 8.1b). These new sequences differ

from the MPA sequence at up to 10 sites. As with

the bias of MPA sampling, missing rare variants

may or may not contribute to functional bias in

ancestral reconstruction, and it would be worth-

while to test their effect empirically. We suggest

that although the number of missing rare variants

is difficult to estimate, and precise knowledge of

which rare variant is missing at each site may be

nearly impossible to acquire, empirical testing of

the cumulative effect of substituting variants that

are rare in the extant species would help to gauge

the potential severity of the problem.

In addition to MPA reconstruction bias, the

inability of a global model to accurately account

for rare variants at each site could contribute

heavily to reconstruction errors. Mixture models

that incorporate sharply different models tend to

reconstruct function fairly accurately in thermo-

dynamics-based population simulations (Wil-

liams et al., 2006), and these may in general be

preferable so long as the taxonomic sampling

density is high enough that the posterior prob-

ability of the particular model at each site is

relatively high (Pollock and Bruno, 2000).

Whereas Bayesian methods are preferable, their

accuracy may still depend on the accuracy of

the substitution model used in the reconstruc-

tion, and a detailed understanding of the con-

ditions under which model inaccuracy can lead

to biased reconstruction is largely unknown. In a

situation such as the example given here with so

many rare variants out of 30 sequences, it is

expected that due to lack of data even the best

phylogeny-based site-specific models would not

be able to estimate the frequency of specific rare

variants accurately.

8.3 Discussion and practical
recommendations

It is apparent that even for archosaur rhodopsin,

our relatively ideal case study, the bias inherent in

choosing to reconstruct the ancestral sequence

with the highest posterior probability, along with

the optimization bias due to site-specific model

inaccuracy, may have biased the frequencies with

which certain amino acids are inferred. Amino

acids that tend to have consistently low posterior

probabilities are most probably undersampled.

The lack of evidence linking aspects of rhodopsin

function such as absorption spectrum to rare sub-

stitutions, along with the paucity of uncertain sites

and the small difference between the predicted

ancestral function and the range of extant func-

tions, lead us to expect that this amino acid sam-

pling bias did not strongly affect the functional

inference in this case. Nevertheless, whether or not

this bias may in fact have affected the functional

assessment of the ancestor remains to be deter-

mined. Here we discuss some of the theor-

etical and practical considerations with regards to

this problem, and present a simple strategy for
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addressing it when the goal is to reconstruct

ancestral proteins in the laboratory.

8.3.1 Theoretical considerations

Determination of functional bias

This can be determined by sampling at least one

ancestral sequence from the posterior distribution,

in addition to the most likely (MPA) sequence. If

there is no important difference in the function

assayed, then the bias inherent in reconstructing

the most likely ancestral sequence may not be a

problem for that particular aspect of protein

function. If functional differences are found

between the most likely sequence and ancestral

sequences sampled from the posterior, then further

sampling from the posterior may be required. The

number of sequences needing to be sampled will

depend on the nature of the variability contained

in the data-set, but in this case at least a few

sequences from the posterior should be sampled;

and more if resources allow. This will provide an

estimate of the variability of the functional infer-

ence, rather than accepting a point estimate with

unknown error. It can then be determined whether

the differences between the most likely sequence

and the posterior samples are significant. Relevant

questions can then be asked, including whether the

uncertainty in ancestral function is less or greater

than any notable differences between the ancestor

and some of its descendants, and whether the

magnitude of uncertainty is greater or less than the

difference between the most likely and average

posterior functions.

Model variability

It is important to explore different models of evo-

lution, and use as detailed a substitution prob-

ability mixture model as is justified based on the

data sampled. Although this is an important issue,

it is addressed in detail in another Chapter 15, and

will not be discussed extensively here. It is also

important to try to detect any unusual situations,

such as coevolution (Pollock et al., 1999; Wang and

Pollock, 2005), or adaptive bursts (Stewart et al.,

1987; Messier and Stewart, 1997; Bishop et al., 2000;

Liberles et al., 2001), that might add uncertainty to

the posterior inference at particular sites. If the

three-dimensional structure and the structural

basis of the function of the protein are known, it

may be useful to sample as many plausible com-

binations of amino acid residues as possible at sites

proximal to ligand binding or enzymatic function

(Chang et al., 2002a, 2005).

Rare variants

As rare variants may be likely to affect function, it

is important to experimentally investigate their

effects if possible, and to include sampling of rare

variants according to their occurrence among all

extant sequences. These sequences will not repre-

sent a reconstruction of the exact ancestor, but they

will represent a sampling of rare variants and their

effect on function. The particular rare variants that

were missed in the ancestor of interest may be

unknowable.

8.3.2 Experimental considerations

Methods of site-directed mutagenesis

If the number of variable sites is not large, then

this may be a feasible way of generating ancestral

protein variants based on the posterior distribu-

tion. The idea would be to first synthesize

the MPA, and then use site-directed mutagenic

methods to synthesize variants. This approach is a

good one when there are only a few variable sites,

but it is difficult to scale it up when there are large

numbers of variable sites involved.

Degenerate oligonucleotides

Rather than introducing variability after synthesis

of an ancestor, variability can instead be incorpo-

rated directly in the initial gene-synthesis steps.

This is particularly easy if the gene synthesis uses

relatively short oligonucleotide fragments of no

longer than 50 bases in length. The use of shorter

oligonucleotide fragments has been found to

improve the speed and efficiency of gene synthesis

over longer fragments, while retaining a relatively

low error rate (Chang et al., 2005). Additionally,

the use of shorter oligonucleotides makes it easy to

introduce variability at sites in the gene-synthesis

step by including oligonucleotides that are

degenerate at those sites. The advantage of this

approach is that even a large amount of variability
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can be incorporated in a single synthesis step. It is

limited, however, in that it is costly and not par-

ticularly accurate to incorporate nucleotides at

unequal frequencies, such as would be necessary

to sample variants proportional to their fre-

quencies in the posterior distribution.

Variable oligonucleotide frequencies

Another means of incorporating variability during

gene synthesis would be to synthesize different

reasonably likely ancestral oligonucleotides, and

then to mix them at the appropriate frequencies to

sample from the posterior distribution. Although

this method offers a significant advantage by

directly incorporating ancestral variants at the

frequencies in which they occur in the posterior

distribution, it suffers from a major drawback as

well. If more than a few variants with substantial

posterior probabilities occur on the same oligo-

nucleotide fragment, then many different oligo-

nucleotides will need to be synthesized to encode

all possible variant combinations. For a long and

variable gene, this could be quite expensive. Note

that this is not as much of a problem for rare

variants since we can simply sample the rare vari-

ants only rarely (for example, a 5% variant in the

posterior might be included at 50% frequency in an

oligonucleotide mix only 10% of the time).

Sampling in silico

In contrast to the above methods, in which

sampling from the posterior distribution is

accomplished by experimental incorporation of

proportionally sampled variants, sampling can

also be separated from the gene-synthesis proced-

ures and done instead beforehand, on a computer.

In this approach, a small number of ancestral

variants are sampled in silico. These variants can

then be synthesized in the laboratory by site-

directed mutagenic methods from an initial (or

MPA) variant.

8.3.3 A proposed strategy

In consideration of the factors discussed above, we

propose that an optimal strategy would be a

hybrid approach incorporating both sampling

in silico and a single-step gene-synthesis strategy

using degenerate oligonucleotides. This approach

would use sampling in silico to produce a reduced

set of ancestral sequence variants drawn from the

posterior distribution. Degenerate oligonucletides

containing these restricted variants would then be

mixed randomly in the synthesis step, in the pro-

portions in which they occur in the in silico sam-

pling. Such an approach would have notable

advantages over creating a full library of sequences

drawn from the posterior, as it would be com-

posed of a greatly reduced number of variable

amino acid sites relative to the full posterior dis-

tribution. Moreover, the number of different oli-

gonucleotides required in the synthesis step would

be greatly reduced, and degeneracy at any site

could be limited to 50:50 mixes, thus greatly

reducing the expense of the procedure. Note that

this approach also takes advantage of the fact that

sites in the protein are assumed to be independent,

and can therefore be sampled independently when

creating these libraries, as long as the frequencies

of the states at variable sites are maintained.

It is worth noting that with a single synthesis

step, the pre-sampled oligonucleotides are mixed

randomly across oligonucleotide positions. In

other words, although the recoverable nucleotide

variants are pre-specified by the sampling in silico,

and thus limited in number, the oligonucleotide

combinations are not, and a very large number of

gene sequences may be recovered. Increasing the

sample size of the computer-generated sequences

and thus increasing the number of variable oligo-

nucleotides synthesized might be statistically pref-

erable (to reduce sampling variance), but will only

be worthwhile if a very large number of overall

sequences are recovered and tested, which is

unlikely to be feasible in many experimental sys-

tems. Using this synthesis strategy, the final result

would be a set of ancestral variants that contained

variable amino acid sites in the proportion that

occur in the computer-sampled sequences from the

posterior. Note that this synthesis strategy does

not necessarily result in synthesis of the overall

MPA sequence, which would need to be synthe-

sized separately.

Although choosing to synthesize the most likely

sequence (MPA), rather than sampling from the

posterior distribution, can lead to biased results if
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the functional consequences are also biased, these

are issues that are easily addressed, and should in

no way hinder the use of ancestral reconstruction

as a fundamentally useful and powerful technique

in comparative functional genomics. The strategy

recommended above does not require any more

work than is now standard in the field (for

example, recent studies have tested single muta-

tion variants from the MPA or maximum-

parsimony construct, or have tested a variety of

models). This is particularly true if the variants are

incorporated in the initial steps of gene synthesis

(instead of using mutagenesis methods after-

wards). Our suggested strategy is technically feas-

ible and will immediately provide more reliable

results than synthesizing the MPA alone. While we

do not yet know, in practice, how often the MPA is

functionally biased compared to a sample from the

posterior, it appears preferable to us to sample

from the posterior in the first place.

In addition to providing a potentially unbiased

reconstruction of ancestral function, incorporation

of the above recommendations would allow

ancestral reconstruction to provide additional

fundamental information about protein biochem-

istry, about the sequence/structure/function rela-

tionship, and about the context-dependent effect of

variants that have been accepted at some time in

the evolutionary process. The distribution of

effects among evolutionarily accepted variants are

different from the distribution of effects from

random mutations, and a better understanding of

such distributions is essential to a realistic theor-

etical model of protein evolution.
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