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[34] Applications of Ancestral Protein
Reconstruction in Understanding Protein

Function: GFP-Like Proteins

By Belinda S. W. Chang, Juan A. Ugalde, and
Mikhail V. Matz
Abstract

Recreating ancestral proteins in the laboratory increasingly is being
used to study the evolutionary history of protein function. More efficient
gene synthesis techniques and the decreasing costs of commercial oligo-
synthesis are making this approach both simpler and less expensive to
perform. Developments in ancestral reconstruction methods, particularly
more realistic likelihood models of molecular evolution, allow for the
accurate reconstruction of more ancient proteins than previously possible.
This chapter reviews phylogenetic methods of ancestral inference, strate-
gies for investigating alternative reconstructions, gene synthesis, and de-
sign, and an application of these methods to the reconstruction of an
ancestor in the green fluorescent protein family.

Introduction

Ancestral protein reconstruction allows for the recreation of protein
evolution in the laboratory so that it can be studied directly. This approach
is a natural extension of experimental studies that examine present-day
Copyright 2005, Elsevier Inc.
All rights reserved.
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protein function, from which the evolutionary history of function may then
be extrapolated. Reconstructing ancestral proteins can provide additional
information not easily obtainable from studies of extant proteins, which are
necessarily limited to the range of function available today. This kind of
experimental approach has been used as a window into the evolutionary
past of proteins in an increasing number of systems (Chandrasekharan et al.,
1996; Sun et al., 2002; Thornton et al., 2003; Zhang and Rosenberg, 2002; for
reviews, see Chang and Donoghue, 2000; Stewart, 1995; Thornton, 2004). In
addition to providing valuable information about the evolution of present-
day molecular structure and function, it also can lead to the discovery of
new aspects of biochemical function that have subsequently been lost in
extant proteins or that exist only in obscure or difficult to obtain organisms
(Adey et al., 1994; Jermann et al., 1995; Malcolm et al., 1990). It can lead to
new insights into the biology, or even the environment, of extinct organisms
(Chang et al., 2002b; Gaucher et al., 2003).

Traditional methods of studying the structure and function of proteins
generally have employed mutagenesis methods to identify residues or
regions of the protein that are important for function. Although the
targets of mutagenesis may often be directed by knowledge of the three-
dimensional structure of the protein of interest, researchers are none-
theless faced with choosing from a vast number of possible mutations,
either singly or in combination. Finding a number of mutations that
produce properly folded and functional proteins, never mind those that
show interesting and substantial effects in biochemical assays, can be
difficult indeed. Multiple site mutants are, therefore, likely to be limited
to combinations of single mutants that produce interesting phenotypes.
Although this can be a reasonable approach given the expense and effort
involved to make and express hundreds of mutants, it necessarily precludes
combinations of mutations that by themselves do not produce any effect
worth noting but together may create a novel or, better yet, interesting
phenotype.

Reconstructing the evolutionary history of proteins in the laboratory
offers several intriguing advantages compared to these more traditional
approaches. Because the process of natural selection tends to eliminate the
vast majority of mutations producing dysfunctional proteins, this approach
effectively screens out mutations resulting in misfolded proteins and focus-
es on those changes that may have altered protein function during its
evolutionary history. Moreover, the problem of assessing which combina-
tions of mutations may be interesting from a functional point of view is
addressed nicely using this approach; ancestral proteins are, in effect,
combinations of mutations that, if properly chosen, have been selected to
produce marked shifts in evolutionary function.
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Here, we review some of the methods of ancestral inference, as well as
the design and synthesis of ancestral genes in the laboratory. We also touch
on some of the issues that can arise, particularly if different methods do not
agree in their inference of ancestral states, and how these issues can be
overcome. Finally, we highlight an example of how these methods can
be applied to the green fluorescent protein (GFP)–like family of proteins.
Ancestral Gene Inference Methods

Generally speaking, two types of phylogenetic methods are used to infer
ancestral sequences: parsimony and likelihood/bayesian methods (Table I).
Parsimony methods (Swofford, 2002) minimize the amount of evolutionary
change along each branch, assuming slow and consistent rates of evolution-
ary change. Likelihood methods, on the other hand, incorporate an explicit
model of substitution, which allows for statistical comparisons among mod-
els in order to determine which is a better fit to the data at hand, at least
among nested models (likelihood ratio tests; see later discussion). Parsimony
methods, with reference to the reconstruction of ancestral states, have been
extensively discussed and reviewed elsewhere (Cunningham et al., 1998;
Maddison, 1995; Omland, 1999; Swofford et al., 1996) and are not discussed
further here.
TABLE I

Statistical Methods of Inference of Ancestral States

Method Programs available

Computer

programs References

Maximum

Parsimony

http://macclade.org/

macclade.html

MacClade

(Maddison and

Maddison, 1993)

(Maddison, 1995;

Swofford et al.,

1996)

http://paup.csit.fsu.edu/ PAUP*

(Swofford, 2002)

Maximum

likelihood/

bayesian

http://abacus.gene.ucl.

ac.uk/software/paml.html

PAML

(Yang, 1997)

Empirical Bayes

(Yang et al.,

1995)

http://morphbank.ebc.uu.se/

mrbayes/

MrBayes

(Huelsenbeck

and Ronquist, 2001)

Hierarchical

Bayes

(Huelsenbeck

and Bollback,

2001a)

http://macclade.org/macclade.html
http://paup.csit.fsu.edu/
http://abacus.gene.ucl.ac.uk/software/paml.html
http://morphbank.ebc.uu.se/mrbayes/mrbayes/
http://macclade.org/macclade.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://morphbank.ebc.uu.se/mrbayes/mrbayes/
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Phylogenetic methods based on maximum likelihood analysis (im-
plemented in programs such as PHYLIP [Felsenstein, 1991], MOLPHY
[Adachi and Hasegawa, 1994], PAML [Yang, 1997], and NHML [Galtier
and Gouy, 1998]) use a likelihood score as an optimality criterion. This
likelihood score is calculated according to a specified model of evolution
(Felsenstein, 1981). Optimizing the likelihood score can be used to infer
the most likely tree topology, as well as parameters such as branch lengths,
character state frequencies, and ancestral states. Bayesian methods are
then used to calculate ancestral states with the highest posterior probabili-
ty. This can be done by using the maximum likelihood topology, branch
lengths, and model parameters as priors (empirical Bayes method [Yang
et al., 1995]), or alternatively the posterior probabilities can be calculated
by taking into account the uncertainty in the maximum likelihood topology
and parameters using a Markov chain Monte Carlo approach (hierarchical
Bayes method, (Huelsenbeck and Bollback, 2001a) (see Table I). This
approach has some advantages over parsimony methods (Koshi and
Goldstein, 1996; Lewis, 1998; Yang et al., 1995). In using an explicit model
of molecular evolution, stochastic methods allow for the incorporation of
knowledge of the mechanisms and constraints acting on coding se-
quences, as well as the possibility of comparing the performance of differ-
ent models, ultimately resulting in the development of more realistic
models (Goldman, 1993).

With stochastic methods such as maximum likelihood and Bayesian anal-
ysis, it is important to explore different models of molecular evolution to
determine how robust the ancestral reconstruction results are (Huelsenbeck
and Bollback, 2001b; Huelsenbeck et al., 2002). Oversimplified or unrealistic
models have been shown in certain cases to yield spurious phylogenetic
reconstructions (Buckley, 2002; Cao et al., 1994; Huelsenbeck, 1997), em-
phasizing the importance of model selection. Models can be grouped into
different classes: nucleotide, amino acid, and codon. Nucleotide models
range from the simplest (Jukes-Cantor, 1969), which assumes equal base
frequencies and rates of transitions and transversions, to much more
complex models allowing unequal base frequencies (Felsenstein, 1981),
transition/transversion bias (Kimura, 1980), among-site rate heterogeneity
(Yang, 1994), and/or nonstationary base composition (Galtier and
Gouy, 1998).

The simplest amino acid model is the Poisson, which assumes equal
amino acid frequencies and rates of substitution among amino acids. This
model is clearly unrealistic and would not be expected to perform well.
More realistic models have been developed that allow unequal amino acid
frequencies (Hasegawa and Fujiwara, 1993), and among-site rate heteroge-
neity (Yang, 1994), in addition to a general time-reversible (GTR) model
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for amino acids, which allows for unequal numbers of substitutions in the
rate matrix for all the different classes of amino acid substitutions (Yang,
1997). Fixed rate matrices have also been calculated for a number of
datasets, including globular proteins (Cao et al., 1994; Dayhoff, 1978; Jones
et al., 1992; Kishino et al., 1990), and mitochondrial transmembrane pro-
teins (Adachi and Hasegawa, 1996). The use of fixed or constant para-
meters in the rate matrix can be advantageous because it allows for a
reduction in the number of parameters in the model of evolution being
used. Recent developments include amino acid models that allow replace-
ment rates to be proportional to the frequencies of both the replaced and
the resulting residues (þgwF model; (Goldman and Whelan, 2002).

Codon-based models of molecular evolution show the most promise,
as they have the potential to incorporate information about different types
of nucleotide substitutions and whether they change the amino acid or
not. The original codon-based models assumed equal nonsynonymous-to-
synonymous rate ratios among sites and lineages (Goldman and Yang,
1994; Muse and Gaut, 1994). Subsequently, models were developed that
allowed that ratio to vary across lineages in a phylogeny (Yang, 1998),
across sites in a protein (Nielsen and Yang, 1998), and across both sites and
lineages (Yang and Nielsen, 2002). Several models, each employing a
different statistical distribution of nonsynonymous-to-synonymous rate ra-
tios (dN/dS) across sites, have been developed as tools to detect positively
selected sites using likelihood ratio tests (‘‘random sites models’’ [Yang
et al., 2000]; for reviews see Bielawski and Yang [2003] and Yang and
Bielawski [2000]). If, for example, there is some a priori information
available based on tertiary protein structure that can be used to partition
sites in the protein into different classes, then fixed-sites models may also
be used (Yang and Swanson, 2002).

Given the diversity of models now available, the choice of a particular
model for use in phylogenetic analysis and ancestral inference is critical.
An inappropriate model of evolution can lead to inconsistency in the
likelihood analysis and convergence to an incorrect result (Huelsenbeck,
1998). Ancestral inference methods are particularly sensitive to model
choice. The possibility of an incorrect result can be reduced by selecting
a model of evolution that displays the best fit to the sequence data at hand.
To this end, likelihood ratio tests can be used to compare two models of
evolution that are nested with respect to each other, to determine whether
the more complex model fits the sequence data significantly better than the
simpler model (Felsenstein, 1981; Huelsenbeck and Rannala, 1997; Yang
et al., 1994). For nested models, a more complex model (H1) will contain all
the parameters of the original model (H0), as well as additional parameters.
If the models are not nested, they cannot be directly compared using a
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likelihood ratio test, and other methods, such as the generation of the
distribution of the test statistic using Monte Carlo simulation, must be used
(Goldman, 1993).
Choosing an Ancestral Sequence to Reconstruct

What happens when different likelihood models or even methods of
inferring ancestral sequences result in different amino acid reconstructions
at particular sites in the protein? This may not happen if the sequences are
closely related, where we would expect inferences about ancestral states to
be fairly robust to changes in the particular model of evolution used.
Additionally, it may be possible to compare likelihood models using likeli-
hood ratio tests, if the models are nested, and then only the reconstructions
from the model with the better fit would be considered. However, it is not
always possible to compare models this way, and there usually will be a
certain proportion of sites for which feasible alternative reconstructions
exist, among which it may be difficult to choose.

There are different approaches that can be taken to address this prob-
lem. The simplest is to randomly choose one reconstruction (per site)
among all the alternatives. This has obvious drawbacks if the true recon-
struction is not among the alternatives chosen. In some cases, the probabil-
ity that the ancestral sequence chosen will match the true ancestor across
all sites may be quite small. This may have important consequences for
subsequent interpretation of the results of functional assays of the ancestral
protein. It seems more appropriate to incorporate at least some exploration
of alternative methods and/or models in reconstructing the ancestral pro-
tein in the laboratory. This can be done in a number of ways. For the
purpose of synthesizing ancestral proteins in the laboratory, different types
of models may be most suitable, depending on how deep the ancestral node
is in the tree. More recent ancestors that are not too diverged from existing
sequences may be best reconstructed using nucleotide models, where para-
meters like transition/transversion rate ratios predominate. In contrast, as
divergence increases, the more ancient nodes may be best reconstructed
using the amino acid models, where factors such as side-chain properties
predominate. For this reason, a useful approach is to synthesize several
variants of the gene predicted to be the best reconstruction under different
models, so the results of different models can be compared in functional
assays in the laboratory (Chang and Donoghue, 2005).

Another approach entirely would be to incorporate degeneracies
at sites where alternative reconstructions exist during the gene synthesis
(degenerate reconstruction). In this way, it is possible to pool together the
predictions of different models, which mitigates the problem of choosing
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the most appropriate model to a certain extent. As a result, a library of
possible ancestral genes is obtained instead of just a single gene that is the
most probable according to a particular model. Although the degenerate
reconstruction approach is not really aimed at directly comparing the most
likely ancestral reconstructions inferred using different likelihood models,
it may be useful to compare models’ performances by evaluating the prob-
abilities of different phenotypes according to each of the models. If the
different phenotypes are observed in the combinatorial library, the
corresponding genes can be sequenced to determine the combinations of
degenerate sites that are responsible for the phenotypes. It is then possible
to go back and evaluate how probable these particular combinations are
relative to each other according to the model’s predictions. In this way, one
can obtain the result in the form such as ‘‘at the node N, model A predicts
phenotype X with probability P1, phenotype Y with probability P2, and so
on.’’ The necessary information concerning probabilities of each state at
each site at each node can be extracted with the PAML 3.13 package by
specifying ‘‘verbose ¼ 2’’ along with ‘‘Rate Ancestor ¼ 1’’ in a control
file for codeml or baseml. The biggest consideration in estimating pheno-
typic probabilities is that it requires an efficient method for screening the
combinatorial library for different phenotypes, which may not be feasible
for many proteins. Therefore, the degenerate and targeted reconstruction
approaches are equally valid and, in fact, somewhat complementary to each
other in that they explore alternative reconstructions in different ways.
Ancestral Gene Design and Synthesis

Artificial Gene Design

Once an ancestral protein sequence or an array of possible sequences
has been inferred, the degeneracy of the genetic code can be used to design
artificial genes with properties useful in the synthesis and expression of the
ancestral gene. Unique restriction sites and potential primer sites that
later will aid in the characterization and construction of the gene can be
incorporated. Codon usage bias can be optimized for a particular species or
cell type (Sharp et al., 1988). In many expression systems, rare codons are
known to cause translational problems caused by limited tRNA availabili-
ty, resulting in misincorporations, truncated proteins, and overall reduced
translational efficiency (Kane, 1995). Conversely, although the goal of
optimizing codon usage frequencies is usually increased expression levels,
the incorporation of unpreferred codons is occasionally useful in slowing
translation of signal sequences so that cellular membrane translocation
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systems are not saturated (Karnik et al., 1987). The secondary structure
of mRNA also has been implicated in lowered expression levels in Escher-
ichia coli (Griswold et al., 2003). GC content can affect levels of heterolo-
gously expressed proteins (Sinclair and Choy, 2002) and may need to be
adjusted to minimize potential difficulties in later molecular biology ma-
nipulations such as cloning and sequencing. Epitopes for antibodies or
other tags that would aid in protein purification also can be introduced in
the design of an artificial gene.
Gene Synthesis Incorporating Degenerate Sites

The principle of the method described here is depicted in Fig. 1. It uses
an array of overlapping oligonucleotides 30–35 bases long to assemble both
strands of the synthesized gene by means of ligation, followed by PCR
amplification of the target product using flanking oligonucleotides as pri-
mers. Note that degenerate sites, if they are to be incorporated into the
gene synthesis, should be positioned as far as possible from the ligation
points. Though very simple, the method has important advantages over
previously reported techniques that rely on longer oligonucleotides (Chang
et al., 2002a; Ferretti et al., 1986), because it minimizes the number of errors
introduced during the chemical synthesis of the oligomers and allows
for them to be ordered commercially instead of requiring an in-house
oligonucleotide synthesizer. Long oligonucleotides tend to form secondary
structures during synthesis, resulting in frequent errors that can include
deletions and insertions of varying sizes. In contrast, shorter oligonucleo-
tides are usually synthesized for a minimal cost with accuracy that is high
enough to skip the expensive purification procedures, which are often
necessary for long oligonucleotides. In addition, in our method, the oligo-
nucleotides do not need to be modified (e.g., they do not require 50

phosphates), which further decreases the cost of the project.
Finally, a gene synthesis strategy that incorporates so many ligation

points per gene is particularly useful because the ligation efficiency is
significantly diminished by the presence of mismatches in the vicinity of
the ligation site. In our protocol, the separation between the ligation sites is
only 16–17 bases, which means that almost three-fourths of the gene length
is actually ‘‘proofread’’ at the ligation step because DNA ligase is sensitive
to mismatches at least up to 6 bases from the ligation site (Roth et al.,
2004). For example, the mutated clones incorporating accidental errors at
this step in our experiments made up less than 50% of the total number,
and even in those clones, the mutations were likely to be PCR errors rather
than gene assembly artifacts.



Fig. 1. Schematic outline of the described gene synthesis strategy. Oligonucleotides

corresponding to plus and minus DNA strands are shown as black and gray arrows, respectively.

Arrowheads correspond to free 30 termini, squares–to free 50 termini. For simplicity of

representation, the scheme shows the synthesis of a short fragment about 210–250 bp in length;

however, the strategy will work for the longer genes as well. In our experiment, as discussed in

the text, the synthesized genes were 730 bp long.
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Gene Synthesis Protocol
Oligonucleotides: The artificially designed ancestral gene should be
divided into overlapping oligonucleotide fragments of about 30–35
bases in length. These oligonucleotides can be ordered from any
reliable commercial service. No additional purification or modifica-
tion is required; the smallest offered synthesis scale (usually
25 nmol) is sufficient.

Phosphorylation: In a 0.5-ml tube, combine 5 �l of 2� buffer for T4
ligase, 4 �l of the oligonucleotide mixture (all oligonucleotides that
comprise the gene in a concentration of 0.1 �M each, except the
two 50-terminal ones that will not be ligated by their 50 ends,
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see Fig. 1) and 1 �l of T4 polynucleotide kinase (New England
BioLabs, Beverly, MA). We used the buffer provided within the
pGEM-T PCR cloning kit (Promega) because it is similar in com-
position to the standard T4 polynucleotide kinase buffer but al-
ready contains ATP in appropriate concentration. Incubate the
reaction at 37� for 30 min, and then incubate it at 65� for 20 min
to deactivate the enzyme.

Ligation: To the completed phosphorylation reaction, add 5 �l of
2� Ligation Buffer (Promega, Madison, WI), 4 �l of the terminal
oligonucleotides mixture (Fig. 1, 0.1 �M each) and 1 �l of the T4
DNA ligase (New England BioLabs, Beverly, MA). Incubate the
reaction for 2 h at 37�.

PCR amplification of the ligated products: It is important to use a
polymerase or polymerase mixture exhibiting proofreading activity,
to minimize PCR errors. In our experiments, we used Advantage
2 polymerase mixture (BD Biosciences Clontech, San Jose, CA) with
the buffer provided. To perform the amplification, combine in an 0.5
thin-walled PCR tube: 2 �l of the ligation reaction, 2 �l of each of
the 50-terminal oligonucleotides diluted to 1 �M, 2 �l of the 10�
reaction buffer, 2 �l of 5 mM dNTP mixture, 12 �l deionized water,
and 0.5 �l of the Advantage 2 polymerase mix. Perform cycling
according to the following program: 45 s at 94�, 1 min at the anneal-
ing temperature (depends on the sequence of the primers), 1 min at
72� (add 1 min per each 1000 bp of the synthesized gene over
1500 bp); 15–20 cycles. The accumulation of the PCR product should
be monitored to keep the number of PCR cycles to the necessary
minimum. The product should become visible on a standard agarose
gel after 15–20 cycles, when 1/10 of the reaction volume is loaded
into the well. The PCR product is then cloned into pGEM-T
(Promega) in order to obtain bacterial expression libraries.
Example of Ancestral Protein Expression: GFP-Like Proteins

The primary function of the family of GFPs (and related colored
proteins), first isolated from the jellyfish Aequorea victoria, is coloration
and/or fluorescence. This is acquired by these proteins via autocatalytic
synthesis of the chromophore moiety within its own globule, using its own
side chains as substrates (Heim et al., 1994; Matz et al., 2002). GFP-like
proteins are the only natural pigments in which both chromophore and
protein are contained within a single gene, which has earned them great
popularity as biotechnology tools (see Lippincott-Schwartz and Patterson
[2003] for a recent review). They come in four basic colors, roughly
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corresponding to distinct types of the chromophore chemical structure:
fluorescent colors including green, yellow, and red, and nonfluorescent
purple-blue (Labas et al., 2002). In many ways GFP-like proteins represent
a convenient model for basic studies in the evolution of gene families (Matz
et al., 2002). The family contains many cases of gene duplication followed
by diversification of function and may even present several cases of con-
vergent evolution of complex features at the molecular level (Labas et al.,
2002; Shagin et al., 2004). At the same time, the proteins are small (�230
amino acid residues long) and can be expressed easily in a functional form
in a variety of heterologous systems including bacteria. The phenotype,
which is simply the color of fluorescence, can already be precisely quanti-
fied in the bacterial colonies growing on a solid media. No further purifi-
cation of the expressed proteins is necessary. This provides an excellent
opportunity for high-throughput screening of expression libraries of
mutants or, as we show in this chapter, reconstructed ancestral genes.

The experiment presented here is part of an ongoing study of the color
evolution among paralogous lineages of GFP-like proteins found in the
great star coral Montastrea cavernosa (Ugalde et al., 2004). This species
possesses several (at least four and maybe up to seven) genetic loci coding
for GFP-like proteins comprising four paralogous groups corresponding
to cyan (emission max at 480–495 nm), shortwave green (emission max at
500–510 nm), long-wave green (emission max at 515–525 nm), and red
(emission max at 575–585 nm) colors (Kelmanson and Matz, 2003). These
colors share a common ancestor sometime after the first diversification of
corals in early Triassic (240 million years ago) and before mid-Jurassic (180
million years ago), according to the fossil record and the phylogenetic tree
topology (Kelmanson and Matz, 2003). The most ancient ancestral pheno-
type of GFP-like proteins is likely to be shortwave green (Shagin et al.,
2004), while the phenotype of the common ancestor of M. cavernosa para-
logs could be anything because more basal branches in the phylogeny lead
to proteins of all colors (Kelmanson and Matz, 2003; Shagin et al., 2004). We
set out to reconstruct proteins in the nodes representing the common ances-
tor of all phenotypes (ALL ancestor), the common ancestor of all the red
proteins (Red ancestor, or R), and two intermediate nodes, corresponding
to the two possible common ancestors of reds and longwave greens (Red/
Green ancestor, or RG; and pre-Red ancestor, or pre-R; see Fig. 4B).

For the prediction of the ancestral sequences, the dataset described in
Shagin et al. (2004), comprising most of the cnidarian GFP-like proteins
known, was used. Three alternative maximum likelihood models were ap-
plied: amino acid–based JTT (Jones et al., 1992), codon-based M5 (Yang et al.,
2000), and nucleotide-based GTRþG3 (Tavare, 1986). The latter model was
different from the more common GTRþG in that it assumed, not one, but
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three independent gamma-distributed rates of evolution at individual nucle-
otide sites, corresponding to their positions within codons. GTRþG3 per-
formed best among nucleotide-based models compared in likelihood ratio
tests using the Modeltest program (Posada and Crandall, 1998).
Fig. 2. Performance of different models in reconstruction of four ancestral sequences.

Horizontal axis shows bin limits, so that, for example, the bars appearing between marks 0.8

and 0.9 show the fractions of sites that are predicted with posterior probability >0.8 and �0.9.

In the legend, ALL, RG, pR, and R correspond to the ALL, red/green, pre-red, and red

ancestors, respectively.
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The reconstructions of all four ancestral sequences were quite robust
with any model, although the GTRþG3 model was slightly less robust in its
predictions compared to the other two (Fig. 2 and Table II). The least
posterior probability at a reconstructed site was 0.328, observed in the
reconstruction of the ALL-ancestor under the GTRþG3 model (the
other two models predicted the same site with posterior probability 0.78).
Comparison of the most probable reconstructions (Fig. 3) revealed that a
small number of sites were predicted differently under different models.
Apparently, these sites were poorly predictable by some or all of the three
models, because no disagreement was observed between models when all
three of them generated the site prediction with posterior probability
exceeding 0.80. When planning ancestral gene synthesis, the codons
corresponding to these ambiguous sites were designed to be degenerate
to incorporate the alternative predictions. As a result, the designed genes
for ALL, RG, pre-R, and R ancestors contained eight, six, four, and six
degenerate codons, respectively.

A total of 500–1000 fluorescent clones from each of the four combina-
torial libraries were visually surveyed using a fluorescent stereomicroscope
(Leica MZ FLIII) with the optical filters providing excitation in the 400–
450 nm range and emission from 475 nm and up (long-pass filter). Such a
filter combination allows for easy discrimination of different fluorescent
phenotypes by human eye, even such similar ones as long-wave and short-
wave green. In two of the four cases (ALL ancestor and Red ancestor), no
phenotypic diversity was observed, while the Red/Green and Pre-Red
ancestors were represented by clones appearing in slightly different shades
of yellow. Twenty-four clones from each library were sequenced and plated
onto new plates for spectroscopy. The fraction of clones containing no
additional mutations was 0.54–0.75. Among these ‘‘clean’’ clones, there
were variations at all the degenerate sites. As predicted, the common
ancestor of all colors (ALL ancestor) turned out to be shortwave green.
Most interestingly, all clones corresponding to the two possible common
ancestors of red and green proteins (Red/Green and pre-Red) showed an
TABLE II

Average Posterior Probabilities of Ancestral Reconstruction at a Site

Ancestor JTT Models GTRG3 M5

ALL 0.972 0.958 0.971

Red/Green 0.979 0.981 0.983

Pre-Red 0.987 0.987 0.988

Red 0.990 0.981 0.989



Fig. 3. Alignment of extant cyan, green, and red fluorescent proteins from Montastrea cavernosa (GenBank accession numbers AY181556,

AY181554, and AY181552, respectively) (Kelmanson and Matz, 2003); and their ancestors predicted using three models (GTRþG3, JTT, and

M5, see text for details). The ancestral sequences correspond to the nodes denoted on Fig. 2: ALL-ancestor (ALL), red/green ancestor (RG),

pre-red ancestor (pR), and red ancestor (R). The green fluorescent protein (GFP) from Aequorea victoria (accession number M626539) is

aligned below for reference.
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intermediate long-wave green/red phenotype. Although the majority of the
expressed protein bulk remained long-wave green, a small fraction was able
to complete the third chromophore maturation stage resulting in a minor
peak of red emission. Clones of the Red ancestor showed an ‘‘imperfect
red’’ phenotype; although in them the red emission peak always dominated,
the rate of green-to-red conversion during the last chromophore matura-
tion stage was apparently still slower than in extant reds, resulting in a
prominent minor peak of green fluorescence (Fig. 4A and C).

It is clear from these experiments that the evolution of red emission
color, which corresponds to an increase of functional and structural
complexity (Shagin et al., 2004), progressed through a series of intermedi-
ate stages. Also, it was possible to establish the color of the common
ancestor of all the M. cavernosa paralogs as shortwave green. The complete
molecular analysis of the color evolution in fluorescent proteins that would
include studies of selection pressure across individual sites and mutagenesis
experiments will be published elsewhere.
Fig. 4. Evolution of colors in a subset of cnidarian green fluorescent protein (GFP)–like

proteins. (A) Fluorescence spectra of the reconstructed ancestral proteins. Multiple curves

correspond to clones bearing variations at degenerate sites. (B) The portion of the phylogenetic

tree of GFP-like proteins discussed here. The names of sequences originating from the great

star coral Montastrea cavernosa are underlined. The values at the branches are nonparametric

bootstrap support under the maximum likelihood criterion with GTRþGþI model. The

sequence G1.2, which in an unconstrained bootstrap analysis has an uncertain affinity either to

red or long-wave green cluster, has been forced to group with the red proteins on the basis of

shared three-nucleotide (one codon) indel. (C) Fluorescence spectra of extant proteins.
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Concluding Remarks

Laboratory synthesis of ancestral proteins is becoming a fast and fairly
inexpensive method for studying the evolution of molecular structure and
function. We no longer have to rely on inferences about the evolution
of protein function based on amino acid substitutions thought to be histori-
cally important for functional shifts, which are then incorporated into site-
directed mutagenesis studies of present day proteins. Ancestral protein
synthesis offers a much more direct view of the evolutionary history of
proteins, where the entire ancestral protein can be recreated and function-
ally assayed in the laboratory. This can shed light not only on the structure
and function of present-day proteins, but also potentially on how evolution
gave rise to the diversity of function seen today.
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