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Rhodopsin is the visual pigment that mediates dim-light vision in vertebrates

and is a model system for the study of retinal disease. The majority of rho-

dopsin experiments are performed using bovine rhodopsin; however, recent

evidence suggests that significant functional differences exist among mam-

malian rhodopsins. In this study, we identify differences in both thermal

decay and light-activated retinal release rates between bovine and human rho-

dopsin and perform mutagenesis studies to highlight two clusters of substitu-

tions that contribute to these differences. We also demonstrate that the

retinitis pigmentosa-associated mutation G51A behaves differently in human

rhodopsin compared to bovine rhodopsin and determine that the thermal

decay rate of an ancestrally reconstructed mammalian rhodopsin displays an

intermediate phenotype compared to the two extant pigments.

Keywords: opsin; retinal disease; retinitis pigmentosa; vision; visual

pigment

Rhodopsin is the visual pigment expressed in rod pho-

toreceptors of the retina and is responsible for mediat-

ing dim-light vision in vertebrates [1]. Rhodopsin is a

heptahelical integral membrane protein that serves as a

model system for class A (rhodopsin-like) G protein-

coupled receptors (GPCRs), despite the unique interac-

tion it shares with its light-sensitive ligand, 11-cis-ret-

inal, to which it is bound through a Schiff base

linkage at K296 [2]. Most vertebrate rhodopsin pig-

ments have a wavelength of maximum absorbance

(kMAX) between 490 and 500 nm, with certain groups

occasionally falling outside this range [3,4]. Visual

transduction begins with photoisomerization of the

chromophore to all-trans-retinal, which causes a series

of conformational changes in rhodopsin, eventually

leading to the biologically active metarhodopsin II

(meta II) state [5]. Thermal energy can also trigger

spontaneous visual pigment activation, leading to dark

noise that interferes with light detection by producing

a false signaling response [6]. For rhodopsin to regen-

erate in vivo, all-trans-retinal must be released to allow

new 11-cis-retinal to enter the chromophore-binding

pocket and form a new Schiff base linkage with opsin,

restoring photosensitivity [7].

Retinitis pigmentosa (RP) is a degenerative retinal

disorder caused by mutations to components of the

visual transduction cascade that leads to symptoms

including decreasing visual fields and progressive visual

impairment, sometimes even resulting in complete

blindness [8]. Mutations in rhodopsin account for
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~ 30–40% of all cases of autosomal dominant RP,

which can be associated with a wide range of struc-

tural motifs, including transmembrane helices (TM)

[9], N- and C-termini [10,11], and interhelical loops

[12]. In vitro studies of rhodopsin structure and func-

tion have been essential in helping to identify the func-

tional changes in rhodopsin due to RP-associated

mutations [13–15]. These functional abnormalities can

include a decreased ability to bind chromophore, an

inability to properly fold during translation, and

decreased stability of the dark or activated state, and

have led to general classifications of RP mutations

types based on these molecular phenotypes [16].

Bovine rhodopsin has been the subject of the vast

majority of studies of rhodopsin structure and function,

including those examining mutations that cause visual

disease. This is largely due to the traditionally wide

availability of cow eyes, along with the development of

protocols to extract rhodopsin directly from retinal tis-

sue [17]. Historically, this placed bovine rhodopsin as the

de facto representative of not only mammalian rhodop-

sins but also all class A GPCRs, and this meant that any

insights into rhodopsin were typically made in the bovine

model. More recently, studies of nonmodel organisms

have illustrated that there are significant differences in

rhodopsin structure and function among vertebrates

[3,18,19], and even within mammalian rhodopsins

[20,21]. Despite these differences, bovine rhodopsin

remains the primary system used to study human retinal

disease caused by changes in rhodopsin function [22].

In order to properly interpret studies of bovine rho-

dopsin that concern inherited retinopathies most rele-

vant to humans, such as RP, it is important to have a

clear understanding of the functional differences

between bovine and human rhodopsin. Several aspects

of human rhodopsin function have been shown to dif-

fer from bovine rhodopsin, such as kMAX [23,24] and

the kinetics of light activation [21,25], suggesting that

functional discrepancy exists between the two visual

pigments despite minimal sequence variation. More-

over, investigating the trajectory of functional differ-

ences between human and bovine rhodopsin can be

better understood through examining ancestrally recon-

structed mammalian rhodopsins [26], which may shed

light on the relationship between rhodopsin function

and amino acid variation among present day pigments.

In this study, we highlight differences in kMAX, dark

state thermal decay, and light-activated retinal release

between bovine and human rhodopsin. We also per-

form site-directed mutagenesis in a human rhodopsin

background to elucidate the molecular basis of these

differences. Furthermore, we engineer a mutation asso-

ciated with RP, G51A, in human rhodopsin that

shows a significantly different effect on function than

the same mutation in bovine rhodopsin. Finally, we

further characterize the ancestrally reconstructed rho-

dopsin sequence of the mammalian node in order to

better understand the functional evolution of mam-

malian rhodopsins. This study highlights the potential

of comparative in vitro studies to provide insight into

both the molecular mechanisms of disease phenotypes,

and the contribution of sequence diversity to the

evolution of protein function.

Materials and methods

Cloning and mutagenesis

The coding sequences of bovine [27] and human [28] rhodop-

sin were amplified using Pfu DNA Polymerase (Fermentas,

Waltham, MA, USA) and inserted into the pJET1.2 cloning

vector (Fermentas). Site-directed mutagenesis primers were

designed to induce amino acid substitutions at seven sites

(213, 216, 266, 270, 297, 298, 300), introducing bovine rho-

dopsin identities into the human rhodopsin sequence; the re-

tinitis pigmentosa mutation G51A was also introduced into

both bovine and human rhodopsin sequences. Mutagenesis

was performed via PCR following the QuikChange site-direc-

ted mutagenesis protocol (Agilent, Santa Clara, CA, USA)

and using PfuUltra II Fusion HS DNA Polymerase (Agilent).

Wild-type and mutant sequences of bovine and human rho-

dopsin were ligated into the p1D4-hrGFP II expression vector

[29]. All plasmid sequences were verified using a 3730 DNA

Analyzer (Applied Biosystems, Foster City, CA, USA).

Visual pigment expression and purification

Expression vectors were used to transiently transfect cul-

tured HEK293T cells using Lipofectamine 2000 (Invitrogen,

Carlsbad, CA, USA). Cells were harvested 48 h post-trans-

fection and opsins were regenerated in the dark using 11-cis-

retinal, generously provided by Rosalie Crouch (Medical

University of South Carolina). Visual pigments were solubi-

lized in HEPES buffer (50 mM HEPES, 140 mM NaCl, 3 mM

MgCl2, pH 7) containing 1% N-dodecyl-D-maltoside (DM)

and immunoaffinity purified using the 1D4 monoclonal anti-

body [30] covalently coupled to UltraLink Hydrazide resin

(Thermo Scientific, Waltham, MA, USA). Purified visual

pigment samples were eluted in sodium phosphate buffer

(50 mM NaPhos, 0.1% DM, pH 7).

Absorbance spectroscopy

The ultraviolet-visible absorption spectra of rhodopsins were

recorded at 25 °C using a Cary 4000 double-beam spec-

trophotometer (Agilent). All kMAX values were calculated

after fitting absorbance spectra to a standard template for A1
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visual pigments [31]. A shift in kMAX to ~ 380 nm was

observed following a 30-s light bleach with a fiber optic lamp

(Dolan-Jenner, Boxborough, MA, USA), representing the

biologically active meta II intermediate. Thermal decay was

monitored as the decrease in absorbance at kMAX while incu-

bating at 45 °C in the dark. Spectra of rhodopsin samples

(1.2–2.0 lM) were recorded every 20 min and temperature

was maintained by a Peltier-based temperature controller

(Agilent). Mineral oil was used to prevent evaporation due to

a long incubation at high temperature and a high scan rate

(2000 nm�min�1) prevented any detectable photoactivation.

Absorbance data were converted to natural logarithms and

plotted against time. A linear regression (y = a + bx) was fit

to the data, while half-life values were calculated based on the

slope ‘b’ (t1/2 = ln2/b). All linear regressions used to calculate

half-life values resulted in r2 values > 0.95.

Fluorescence spectroscopy

Retinal release following rhodopsin light-activation was

monitored using a Cary Eclipse fluorescence spectropho-

tometer equipped with a Xenon flash lamp (Agilent), based

on a protocol originally established in a previous study [32],

with modifications and specific parameters being previously

noted [19]. Briefly, 0.1–0.2 lM rhodopsin samples were

bleached for 30 s at 20 °C with a fiber optic lamp (Dolan-

Jenner), while collecting fluorescence measurements at 30-s

intervals. Data were fit to a three-variable, first-order expo-

nential equation (y = yo + a(1�e�bx)), with half-life values

calculated based on the rate constant ‘b’ (t1/2 = ln2/b). All

curve fitting resulted in r2 values of > 0.95.

Statistical analyses

To evaluate whether the effect of G51A on retinal release was

significantly different between the bovine and human back-

grounds, we used a two-way analysis of variance (ANOVA)

[33]. To test for an interaction effect between the species back-

ground and the G51A mutation, we set up the analysis to have

the residue at site 51 as the first factor and species as the sec-

ond factor (e.g. [34]). As such, comparisons between human

and bovine rhodopsin were made in the wild-type back-

grounds, and G51A mutants for each species. Both factors

had nonsignificant (P > 0.05) differences in variance (Levene’s

tests) and residuals were normally distributed. To correct for

multiple tests, post hoc pairwise comparisons between

ANOVA groups were assessed using Tukey’s statistic [35].

Results

Kinetic rates of human rhodopsin differ from

bovine rhodopsin

Purified human and bovine rhodopsin both formed

Schiff base linkages with 11-cis-retinal, producing dark

spectra with kMAX values of 494.0 � 0.12 nm and

498.5 � 0.06 nm, respectively (Fig. 1A,B), which is

consistent with previously established values [23,24].

Following a light bleach of 30 s, kMAX values shift to

~ 380 nm, characteristic of the biologically active meta

II intermediate, indicating both rhodopsins properly

activate in response to light (Fig. 1A,B inset). The

thermal decay of the dark state was evaluated by incu-

bating rhodopsin in the dark at 45 °C and monitoring

the decrease in absorbance at kMAX over time

(Fig. 1C,D), which has been associated with isomeriza-

tion of the chromophore and hydrolysis of the Schiff

base linkage [14,36]. Interestingly, the half-life of ther-

mal decay for human rhodopsin was three times longer

(t1/2 = 445.5 � 10.55 min; rel-t1/2 = 3.00) than that of

bovine rhodopsin (t1/2 = 148.7 � 2.78 min; rel-t1/2
= 1.00; Fig. 1E,F). Additionally, in order to investigate

the stability of the meta II intermediate, a fluorescence

assay was used to monitor the rate of release of all-

trans-retinal following photoactivation at 20 °C. The

half-life of retinal release for bovine rhodopsin was

15.5 � 0.35 min, similar to previously recorded values

[19,37], while that of human rhodopsin was signifi-

cantly shorter at 11.8 � 0.38 min (Fig. 1G). Retinal

release half-lives were also recorded at two additional

temperatures (16 °C, 25 °C) in order to construct

Arrhenius plots to compare activation energies of

light-activated Schiff base hydrolysis (Table 1). Despite

human rhodopsin having shorter half-life values at

each temperature point, activation energies of both

human (21.6 � 1.3 kcal) and bovine rhodopsin

(21.3 � 1.7 kcal) remained nearly identical (Fig. 1H).

These values are also similar to literature values of

several rhodopsins [19] and a cone opsin [38]. These

results highlight that significant differences in both

dark and activated state kinetic functions exist between

these two mammalian rhodopsins, which were further

investigated with mutagenesis experiments.

Sites 297 and 298 are functional determinants of

bovine and human rhodopsin

Substitutions were made in human rhodopsin at sites

297, 298, and 300, changing them to bovine rhodopsin

amino acid identities (S297T, A298S, I300V) to investi-

gate the contributions of these sites to the functional

differences between human and bovine rhodopsins.

While S297T (495.2 nm) and A298S (495.7 nm) caused

redshifts in kMAX compared to wild-type, the shift pro-

duced by I300V (494.8 nm) was smaller, less than a

nanometer from wild-type (Fig. 2A). The relative half-

life of thermal decay of S297T was almost identical to

bovine rhodopsin (1.10), causing a larger shift than

1722 FEBS Letters 591 (2017) 1720–1731 ª 2017 Federation of European Biochemical Societies

Functional comparison of human and bovine rhodopsin J. M. Morrow et al.



either A298S (1.77) or I300V (2.22; Fig. 2B). Shifts in

light-activated retinal release rates were also varied

among these three substitutions, with S297T

(14.3 � 0.23 min) again shifting function closer to

bovine rhodopsin, while A298S (21.1 � 1.11 min)

resulted in a much slower rate, and I300V

(9.9 � 0.15 min) in contrast had an even faster rate

than wild-type human rhodopsin (Fig. 2C). The influ-

ence of these substitutions may act directly with the

Schiff base and/or indirectly with the nearby N55-D83-

N302 hydrogen-bonding network (Fig. 2D). When all

three mutations were combined, the resulting functional

shifts were of smaller magnitude than the more extreme
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Fig. 1. Comparative analysis of in vitro

function between bovine and human

rhodopsin. Dark spectra of (A) bovine

rhodopsin and (B) human rhodopsin, used

to estimate kMAX values by curve fitting to

A1 visual pigment templates. Respective

difference spectra (inset) were produced

by subtracting activated spectra following

a 30-s light bleach, resulting in a complete

conversion into meta II, from dark spectra.

Incubating (C) bovine rhodopsin and (D)

human rhodopsin at 45 °C in the dark led

to a decrease in absorbance, which can be

plotted against time (E–F) to determine

the rate of thermal decay. Increase in

fluorescence due to release of all-trans-

retinal following photoactivation (G) in

bovine and human rhodopsin, with half-life

values calculated based on the resulting

first-order kinetic reactions. An Arrhenius

plot (H) of the natural logarithm of retinal

release rates at a variety of temperatures

is used to estimate activation energies (Ea)

based on the negative reciprocal of the

slope of a linear regression line that best

fit the data.

Table 1. Light-activated retinal release values measured at various

temperatures used to construct an Arrhenius plot.

Visual pigment

Temperature

(°C)

Light-activated retinal

release half-life (min)a

Bovine rhodopsin 16 24.0 � 2.44 (3)

20 15.5 � 0.30 (16)

25 8.1 � 0.60 (7)

Human rhodopsin 16 19.9 � 0.50 (3)

20 11.8 � 0.39 (8)

25 6.4 � 0.41 (3)

aValues reported as mean � standard error and number of replicates in

parentheses.
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effects seen for each property by single mutations

(Fig. 2E; Table 2). These results imply that sites 297

and 298 likely play a larger role in mediating rhodopsin

function than site 300, while also suggesting that the

combination of all three mutations may mitigate more

drastic shifts caused by any single substitution.
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Fig. 2. Effects of substitutions near the Schiff base linkage on human rhodopsin function. The effects of mutations S297T, A298S, and

I300V, along with a triple mutation, on (A) kMAX, (B) thermal decay, and (C) light-activated retinal release. (D) Crystal structure of bovine

meta II (PDB code: 3PQR), highlighting the proximity of these sites to the Schiff base linkage with retinal. (E) 3D plot visualizing the

contributions of these substitutions to the three functional properties investigated.

Table 2. Summary of functional data collected from wild-type and mutant rhodopsins.

Visual pigment Mutation kMAX (nm)a
Relative thermal

decay half-life (min)a
Light-activated retinal

release half-life (min)a

Bovine rhodospin Wt 498.5 � 0.05 (11) 1.00 � 0.02 (9) 15.5 � 0.30 (16)

Human rhodopsin Wt 494.0 � 0.12 (3) 3.00 � 0.07 (2) 11.8 � 0.38 (8)

T213I 495.4 2.98 13.2 � 0.35 (2)

M216L 494.7 2.47 15.2 � 0.30 (2)

V266L 493.6 1.65 17.9 � 0.55 (2)

S270G 494.4 1.77 12.5 � 0.10 (2)

T213I/M216L/V266L/S270G 495.9 0.81 19.2 � 0.52 (3)

S297T 495.2 1.10 14.3 � 0.23 (3)

A298S 495.7 1.70 21.1 � 1.11 (3)

I300V 494.8 2.22 9.9 � 0.15 (2)

S297T/A298S/I300V 495.5 1.96 19.2 � 0.35 (2)

Mammalia rhodopsin Wt — 1.66 —

a Values reported as mean � standard error and number of replicates in parentheses when applicable.
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Successive substitutions in TM5 and TM6 have

an additive effect on kinetic functions

Bovine rhodopsin identities were also introduced at

each of four nearby sites in human rhodopsin (T213I,

M216L, V266L, S270G) located in TMs 5 and 6 to

determine if any or all contributed to the functional

discrepancies between human and bovine rhodopsin.

Of the four single mutants, only T213I caused a red-

shift in kMAX of more than 1 nm (495.4 nm), with

M216L (494.7 nm), V266L (493.6 nm), and S270G

(494.4 nm) resulting in very minor changes within the

range of experimental variation (Fig. 3A). Meanwhile,

the relative thermal decay half-life was shifted by some

mutations towards a bovine rhodopsin phenotype,

such as V266L (1.65) and S270G (1.77), whereas

M216L (2.47) caused a more moderate change and

T213I (2.98) did not vary from wild-type human rho-

dopsin (Fig. 3B). For the half-life of retinal release,

V266L (17.9 � 0.55 min) shifted to a rate longer than

that of bovine rhodopsin, similar to the effect seen by

the A298S mutation, although not as severe. The half-

life of M216L (15.2 � 0.30 min) was comparable to

that of bovine rhodopsin, while both T213I

(13.2 � 0.35 min) and S270G (12.5 � 0.10 min)

caused smaller half-life increases (Fig. 3C). The fact

that these substitutions contribute to kinetic properties

related to the release of retinal may be due to their

proximity to the hypothesized site of retinal release

([39,40]; Fig. 3D). Additionally, when all four muta-

tions were combined, larger shifts in kMAX and kinetic

rates were observed than for any single mutation, sug-

gesting that a synergistic effect is occurring as substitu-

tions accumulate around this structural motif that is

influencing rhodopsin kinetics (Fig. 3E; Table 2).

The effect of retinitis pigmentosa mutation G51A

depends on background sequence

We engineered and expressed G51A in a human rho-

dopsin background, alongside bovine rhodopsin, to

determine if the effects of this RP mutation on in vitro
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rhodopsin function were uniform between the two

mammalian pigments. When introduced into bovine

rhodopsin, the G51A mutation led to a significantly

longer retinal release half-life relative to wild-type

(27.5 � 2.44 min; +12.1 min vs. wild-type; Fig. 4A),

which is comparable to previous studies [41,42]. Inter-

estingly, when the same G51A substitution was made

in human rhodopsin, the increase observed in the reti-

nal release half-life (18.1 � 1.81 min; +6.3 min vs.

wild-type; Fig. 4B) was noticeably smaller than the dif-

ference in bovine rhodopsin (Fig. 4C). We supported

this pattern statistically using a two-way analysis of

variance (ANOVA), which showed a significant inter-

action effect between site 51 and species (F1,24 = 27.7,

P = 0.00002) that explained 17% of the variance in

the data (Table 3). The majority of the variance (51%)

was explained by the main effect from site 51

(F1,24 = 81.4, P < 0.0001), but there was also a smaller

contribution (13%) from the species main effect

(F1,24 = 22.4, P = 0.00008). This suggests that back-

ground sequence can influence the magnitude of func-

tional change observed when introducing G51A, likely

due to variable identities of nearby sites (Fig. 4D).

Human rhodopsin is more thermally stable than

ancestral Mammalia rhodopsin

We expressed a previously reconstructed ancestral

Mammalia rhodopsin [26] and measured thermal decay

in order to better understand the evolutionary trajecto-

ries of human and bovine rhodopsin function.

Mammalia rhodopsin consists of 355 amino acids,

sharing 94.9% sequence identity with human rhodop-

sin (18 differences) and 92.4% sequence identity with

bovine rhodopsin (27 differences). Additionally, Mam-

malia rhodopsin has human rhodopsin identities at six

of the seven sites investigated in this study, with the

only exception being S298, which follows the trend of

terrestrial mammalian rhodopsins that seem more

likely to have human rhodopsin identities at these sites

(Fig. 5A). Interestingly, the relative thermal decay

half-life of Mammalia rhodopsin (1.66) was longer

than bovine rhodopsin, but shorter than human rho-

dopsin, suggesting that human rhodopsin is more ther-

mally stable than even Mammalia rhodopsin (Fig. 5B).

Both the kMAX (501.3 nm) and retinal release half-life

(22.7 � 0.66 min) of Mammalia rhodopsin have previ-

ously been measured [26]. Consequently, Mammalia

rhodopsin differs from both bovine and human rho-

dopsin in all three functional properties reported in

this study (Fig. 5C).

Discussion

Bovine rhodopsin is the prototypical visual pigment

and has served as a model system for the vast majority

of studies of rhodopsin structure and function, which

includes the resolution of crystal structures of both

dark [43,44] and activated states [45–47]. However,

emerging evidence highlights the importance of com-

parative studies to address the variation in rhodopsin

function [4,19,48], even among mammals [3,20]. This
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trend also extends to human rhodopsin, where despite

93.4% sequence identity between the two pigments

[28], several aspects of function differ from bovine rho-

dopsin, such as kMAX [23,24], and kinetics of rhodop-

sin intermediates following light activation [21,25].

This study shows that human rhodopsin and bovine

rhodopsin also have significantly different rates of

thermal decay and light-activated retinal release. While

the larger discrepancy in rates of thermal decay is a

surprising result, it follows a model that suggests an

association between kMAX and thermal stability, where

blue-shifted visual pigments are less susceptible to

spontaneous thermal activation [49,50]. This effect

may be based on differences in energy surfaces of the

ground-state chromophore caused by amino acid sub-

stitutions between bovine and human rhodopsin [51].

It should also be noted that our experiments were per-

formed in micelles of dodecyl maltoside, and that func-

tional properties of visual pigments may vary when

solubilized in different concentration or type of deter-

gent [52,53], or when housed in lipid bicelles [54].

Our mutagenesis results localized two key motifs of

rhodopsin structure that contribute to these functional

discrepancies: (a) a trio of sites located within a single

helical turn of the Schiff base linkage [2]; and (b) four

sites near an opening between TM5 and TM6 that

forms due to helical rearrangements during activation

[39,40]. The most notable site investigated is 298,

which mediates significant shifts in kMAX, thermal

decay, and light-activated retinal release. This is likely

explained by the proximity of site 298 to the K296

Schiff base linkage of the chromophore, and is consis-

tent with the predicted effects of A298S on the electro-

static environment of the chromophore-binding pocket

of human rhodopsin [21]. Mutations at nearby sites

297 and 300 also led to shifts in thermal decay and

light-activated retinal release. These sites are also prox-

imal to the N55-D83-N302 hydrogen bond chain that

Table 3. Two-way ANOVA for the effect of species and site 51 on light-activated retinal release half-life.

Source of variation s.s. d.f m.s. F P F crit. Omega sqr.

Factor #1 (Species) 95.57 1 95.57 22.44 0.00008 4.26 0.1370

Factor #2 (Site 51) 346.48 1 346.48 81.37 3.538E-9 4.26 0.5134

Interaction (Species 9 Site 51) 118.02 1 118.02 27.71 0.00002 4.26 0.1707

Error 102.20 24 4.26

Total 662.27 27 24.53

Effect size (Omega-squared) 0.8211
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places stabilizing interhelical constraints on TMs 1, 2,

and 7 [55,56], and has been found to modulate differ-

ences in the kinetic properties of rhodopsin light-acti-

vation across different species [18]. Four other variable

sites that were mutated (sites 213, 216, 266, 270) are

positioned within 8 �A of the b-ionone ring of the chro-

mophore in dark state rhodopsin and are part of TMs

5 and 6, the latter of which experiences an outward tilt

during activation [57,58]. This results in an opening

between TM5 and TM6 in the activated meta II state,

which is thought to be the site where all-trans-retinal is

released from opsin [39,40]. While individual substitu-

tions at each of these sites only lead to modest changes

in function, combining all four mutations led to much

larger shifts in thermal decay and light-activated reti-

nal release, which is concordant with previous studies

that suggest variation at this motif can tune rhodopsin

kinetics and that multiple mutations can lead to a

more significant, additive effect [19,59].

Bovine rhodopsin has been a focus of studies inves-

tigating the molecular basis of hereditary retinal

degeneration in humans, such as RP [60,61]. Despite

advances in clinical diagnoses and treatments, the

molecular characterization of RP remains a challenge

due to the wide range of disease-associated mutations

that yield variable molecular and clinical phenotypes

[62,63]. These challenges emphasize the importance of

reliable in vitro results that accurately reflect the

impact of point mutations on protein function. The

rhodopsin mutation G51A was first reported in the

early 1990s following a screen of almost 300 subjects

with RP [64]. Unlike some RP mutations that cannot

be expressed in vitro due to severe misfolding or an

inability to bind chromophore, G51A has been intro-

duced into bovine rhodopsin, expressed, and function-

ally characterized [41]. Additionally, site 51 is thought

to be involved in hydrogen-bonding interactions with

N55 [65], with G51A resulting in altered stability of

the dark and activated states of rhodopsin [42]. Our

initial comparison suggests that variable sites 297, 298,

and 300, which are proximal to the N55-D83-N302

hydrogen bond chain, help to mediate the functional

differences between bovine and human rhodopsin and,

therefore, may also influence the mutant phenotype of

G51A that is associated with RP. Our results verify

this hypothesis by showing that the effect of G51A on

light-activated retinal release in human rhodopsin is

different than that in bovine rhodopsin, with part of

the contribution to the shift in function being due to

background protein sequence. Moreover, this may

imply that other RP-associated rhodopsin mutations

proximal to the N55-D83-N302 hydrogen bond chain

or the opening that forms in meta II between TMs 5

and 6 may cause altered effects to molecular function

in human rhodopsin compared to bovine rhodopsin.

Elucidating the variable impact in different protein

backgrounds is critical for accurate understanding of

the molecular basis of disease.

Examining rhodopsin through a comparative lens

has been instrumental for enhancing our understand-

ing of its function. For instance, highly conserved sites

across mammalian rhodopsins have been shown to be

more likely connected with disease-associated muta-

tions [66]. Comparative sequence data were also used

to infer the sequence of the ancestral mammalian rho-

dopsin pigment and resurrect the protein used in this

study [60,61]. Ancestral mammals also have character-

istics that suggest adaptations to a nocturnal lifestyle

[67,68] that have traditionally been highlighted by eval-

uations of physiology [69] and fossil phenotypes [70]

and are central to the specialized role of rhodopsin as

a dim-light photoreceptor. However, more recent stud-

ies have reconstructed ancestral mammalian rhodopsin

sequences using phylogenetic methods and performed

expression and mutagenesis studies to evaluate the

importance of specific residues to dim-light visual pig-

ment function [26,71]. Here, we further characterize

the mammalian rhodopsin protein reconstructed and

expressed in our previous study [26] by determining

that the dark state has a thermal decay half-life that is

approximately intermediate between the half-life values

of bovine and human rhodopsin. This is a curious

result, considering that both the kMAX values and

light-activated retinal release rates of bovine and

human rhodopsin evolved in the same direction rela-

tive to ancestral Mammalia rhodopsin, but in oppos-

ing directions for thermal decay rates.

This study highlights important differences between

the function of bovine and human rhodopsin, along

with hypotheses relating to the major structural ele-

ments that may be involved in these differences. We

continue to build on recent work aiming to better char-

acterize human rhodopsin [21,25], most notably how it

differs from bovine rhodopsin. This is particularly criti-

cal given mounting evidence for significant functional

variation among mammalian rhodopsins [3,20,72].

Moreover, additional characterization of differences

between bovine and human rhodopsin function will

lend further insight into the mechanisms by which

rhodopsin mutations may result in retinal disease.
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